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Numerous environmental reservoirs contribute to the

widespread antibiotic resistance problem in human pathogens.

One environmental reservoir of particular importance is the

intestinal bacteria of food-producing animals. In this review I

examine recent discoveries of antibiotic resistance genes in

agricultural animals. Two types of antibiotic resistance gene

discoveries will be discussed: the use of classic microbiological

and molecular techniques, such as culturing and PCR, to

identify known genes not previously reported in animals; and

the application of high-throughput technologies, such as

metagenomics, to identify novel genes and gene transfer

mechanisms. These discoveries confirm that antibiotics should

be limited to prudent uses.
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Introduction
Bacteria harbor antibiotic resistance genes in the absence

of anthropogenic selective pressure. The primary role of

resistance genes in natural microbial communities could

be for a function other than resistance [1]. Effects of

anthropogenic antibiotic use have been to select for the

movement of resistance genes onto mobile elements, the

transfer of mobile elements among different bacteria

(including pathogens), and the flow of resistant bacteria

among environments [2��]. This has led to the definition

of two eras of antibiotic resistance gene evolution: natural

antibiotic resistance that occurred in microbial commu-

nities before the early 1900s, and acquired antibiotic

resistance that has disseminated as a result of the

selective pressure of antibiotic use [3��]. Since retrospec-

tive studies are challenging, contemporary research on

antibiotic resistance genes in animal microbiomes is

largely an investigation of acquired resistance traits.

Animal microbiomes have acquired antibiotic resistance
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genes over several decades’ exposure to antibiotics and

heavy metals, both of which are used for treating disease,

preventing disease, and improving feed efficiency. Obser-

vations of acquired resistance genes, plus the discovery of

emerging resistance genes, are important to inform poten-

tial resistance problems in agricultural systems. In this

sense, the emerging picture of resistance genes can be

defined as both familiar resistance genes that are new to a

species or ecosystem, and as novel resistance genes not

previously reported.

Depth of antibiotic resistance problem via
culturing or PCR — discovery of what we
know
Classical molecular and microbiological techniques, such

as PCR and culturing, continue to be important for

defining the dissemination of known antibiotic resistance

genes in foodborne pathogens, animal microbiomes, and

the environment (Figure 1). Use of these methods to

monitor antibiotic resistance genes in foodborne patho-

gens and commensal bacteria has been implemented in

some countries, including the U.S. (NARMS [4]) and the

E.U. [5]. Among seven European countries for whom

antibiotic use and antibiotic resistance data were avail-

able, a clear correlation was seen between antibiotic use

and resistance gene prevalence in food animals [6�].
However, a major gap in knowledge for most countries

excepting Denmark [7] is data on antibiotic use in specific

animal species on particular farms. Effective monitoring

of bacterial antibiotic resistance requires these data to

fully assess the impacts of various antibiotic types and

quantities on resistance gene prevalence. An additional

concern with some monitoring programs is that they are

only collecting data on one aspect of antibiotic resistance

— those resistance traits harbored by the organisms or

genes being monitored.

Given that microbial communities are a persistent reservoir

of resistance genes [8,9], basic research on emerging

antibiotic resistance genes is essential to inform issues

potentially left incomplete by federal monitoring

programs. For example, pathogens possessing extended-

spectrum beta-lactamases (ESBLs) are a world-wide

clinical problem, conferring resistance to even third-

generation cephalosporins and impeding bacterial disease

treatment [10]. Most ESBL-producing bacteria are isolated

from humans, not animals [11], but ESBL-producing

Escherichia coli are being detected with increased frequency

in animals [12�]. Recent studies have revealed that

although transmission routes are sometimes unclear,
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Glossary

Animal microbiome: the microbial community associated with

animals, including gut commensal bacteria

Co-selection: the indirect selection for one antibiotic resistance

gene along with another resistance gene, often due to co-carriage on

a mobile genetic element

Metagenomics: the collective genome of an assemblage of

organisms

Figure 1

Environmental sample

Isolate bacteria Isolate plasmids

PCR for known
antibiotic resistance

genes

Metagenomic
sequencing

Annotate resistance
genes with ARDB [25]

or CARD [26]

Build clone libraries
for functional assays

Isolate total DNA

Current Opinion in Microbiology

Routes of antibiotic resistance gene discovery are discussed in this

manuscript. Both classical methods such as culturing and contemporary

methods such as metagenomics inform antibiotic resistance gene

ecology. Specialized databases for annotating resistance genes are the

Antibiotic Resistance gene DataBase (ARDB) [25] and the

Comprehensive Antibiotic Resistance Database (CARD) [26].
ESBL-producing E. coli or Enterobacteriaceae can be found

in the animal feed [13] and in livestock and poultry feces

[13–20] in many developed countries. One important de-

velopment was the PCR-based discovery of the CTX-M

type ESBL in U.S. cattle, which was the first report of this

type of ESBL in food-producing animals in the U.S. [19].

Additionally, these studies have shown that genes encod-

ing ESBLs are often found on mobile genetic elements and

are associated with other resistance genes. This suggests

that the application of multiple types of antibiotics, not

only beta-lactams, could co-select for ESBLs and lead to

the persistence of ESBLs in microbial communities.

Finally, ESBL-producing E. coli are sometimes detected

in food animal products [21–23], but the routes of trans-

mission along the food supply chain are rarely clear. Taken

together, the discovery of clinically relevant antibiotic

resistance genes in food-producing animals presents a

paradox: bacterial antibiotic resistance genes are linked

between humans and animals, but the concomitant gaps in

knowledge about how those linkages are made prevent

efficacious interventions.

High-throughput technologies show breadth
of resistance problem — discovery of what we
don’t know
Although PCR-based approaches are excellent for disco-

vering homologues of known resistance genes, PCR does

not enable the discovery of unknown or distantly related

resistance genes. Metagenomic analysis of the total DNA

from a microbial community is a powerful tool to assess the

entire antibiotic resistome (Figure 1) [24]. Metagenomics

based on high-throughput sequencing is suited to discover

unanticipated aspects of antibiotic resistance gene ecology,

including the presence of unforeseen resistance genes or

changes in the abundance of related resistance genes. As

with PCR-based methods, the discovery of truly novel

resistance genes is limited, in this instance because meta-

genomics relies on homology searches to annotate DNA

sequences. The annotation of antibiotic resistance genes

has been improved, first by the Antibiotic Resistance gene

DataBase (ARDB) [25] and more recently by the Com-

prehensive Antibiotic Resistance Database (CARD) [26].

The results of metagenomic analyses lend a broad view of

antibiotic resistance across all environments, including

animal intestinal microbiomes.

Analyses of metagenomic sequences from beef cattle feces,

chicken ceca, and swine feces all reveal an abundance of

resistance genes regardless of antibiotic treatment. In a
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study of conventionally raised beef cattle with no exposure

to therapeutic antibiotics, sequence-based metagenomics

predicted that 3.7% of the sequences encoded resistance to

antibiotic and toxic compounds [27]. Of these genes, nearly

half of them encoded multidrug resistance efflux pumps.

A similar study of two chicken ceca revealed the same

result [28].

The authors of the cattle study also compared the cattle

fecal metagenomes to metagenomes from other agricul-

tural systems (chicken cecum, cow rumen, and farm soil),

three human fecal samples, and unrelated ecosystems

(Sargasso sea and Antarctic lake), showing that the

agricultural or host-associated metagenomes harbored

an increased abundance in genes encoding resistance

to antibiotic and toxic compounds compared to the meta-

genomes from remote marine environments [27]. It is

important to note that the remote marine environments

nonetheless harbored some of the same antibiotic resist-

ance genes as were found in the host-associated meta-

genomes. Certain genes that we know to confer antibiotic

resistance actually perform other functions, such as efflux

pumps, in their native microbial communities [1,29,30].

Subsequent gene expression and functional analyses are
www.sciencedirect.com
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therefore important to determine whether annotated

resistance genes can confer resistance to antibiotics.

Additionally, the global dissemination of antibiotic resist-

ance genes is apparent, even of so-called acquired resist-

ance genes in the absence of selective pressure [31]. As

the quantity of genetic data from diverse environments

continues to increase, comparisons such as these will

inform the breadth of antibiotic resistance gene dissemi-

nation in and among environments.

Recent analyses of swine fecal metagenomes confirm that

they too harbor diverse and abundant resistance genes

regardless of antibiotic treatment [32�,33�]. The effect of

antibiotic treatment on antibiotic resistance has been

additionally demonstrated. Zhu et al. showed that anti-

biotic treatment of swine in three commercial swine farms

in China led to increased diversity of antibiotic resistance

genes in manure [33�]. Looft et al. analyzed the effect of

two weeks of continuous in-feed antibiotic treatment

(ASP250 [penicillin, chlortetracycline, and sulfametha-

zine]) on resistance genes in two separate studies

[32�,34]. Certain antibiotic resistance genes increased

in abundance in the metagenomes from medicated

animals. Some of these resistance genes conferred resist-

ance to the antibiotics administered, but at least one

annotated gene, an aminoglycoside O-phosphotransfer-

ase, increased in abundance despite conferring resistance

to antibiotics not administered in the study (aminoglyco-

sides) [32�]. This resistance gene has been reported on

mobile elements in Gram-negative bacteria [34] and is

therefore likely part of the acquired antibiotic resistome

of swine gut bacteria. These results are important in light

of recent US FDA guidelines for the regulation of clini-

cally important antibiotics for use in agriculture [35]

because they demonstrate that in this age of acquired

resistance, a given antibiotic might select for unantici-

pated co-resistance or cross-resistance. Reducing the se-

lective pressure of only certain antibiotics may not cause a

reduction in resistance genes of human and animal

importance [36].

One potential disadvantage of the sequence-based meta-

genomic approach is the detachment of genetic context,

such as adjacent markers of horizontal gene transfer and

indicators of the host bacterium of origin. Improved

assembly of metagenomic sequences will provide genetic

context in silico, but care must be taken to avoid con-

clusions drawn from misassembled sequences. Technical

efforts to maintain genetic context have not been widely

applied in any ecosystem but are essential for filling gaps

in knowledge about resistance gene transfer in the envi-

ronment. One approach is to isolate plasmids from

environmental samples. For example, the isolation of

IncP-1e plasmids from pig manure and manure-amended

soil indicated the broad dissemination of this group of

plasmids and their associated resistance genes in this

agricultural system [37�]. Experiments to determine
www.sciencedirect.com 
the original host range for the plasmids suggested that

they were harbored at least by culturable Beta-proteobac-
teria and Gamma-proteobacteria [37�]. Recent plasmid

metagenomic analyses have discovered novel plasmids

carrying antibiotic resistance genes in activated sludge

[38] and surprising cross-phyla mosaicism in plasmids of

the cow rumen [39�]. These results emphasize how much

remains to be defined regarding resistance gene transfer

among diverse bacteria in the environment.

An additional approach to maintaining the genetic con-

text of antibiotic resistance genes is functional metage-

nomics, which is the cloning and expressing of

environmental DNA in a bacterial host such as E. coli
[40,41]. The value of functional metagenomics is theor-

etically limited by heterologous gene expression, and yet

its use continues to detect previously unknown phenom-

ena. This method has been applied to the intestinal

microbiome of organic pigs in a study of tetracycline

resistance. Numerous discoveries were made, including

novel tetracycline resistance genes, known tetracycline

resistance genes not previously observed outside of the

human gut microbiome, and a preponderance of mobile

genetic elements adjacent to most resistance genes [42��].
One tetracycline-resistant clone encoded a transposase

that was related to the IS982 and IS4 insertion sequence

families, and another was 99.7% similar to plasmid

pSC101 (IncQ) from Salmonella enterica serovar Typhi-

murium [42��]. Taken together, analyses that preserve

flanking DNA provide insights into how resistance genes

persist and are transferred in bacterial communities.

Conclusions
Discoveries of antibiotic resistance genes in animals have

revealed that their gut microbiome is a reservoir of known

and novel antibiotic resistance genes, and that resistant

bacteria and resistance genes are shared between human

and animal microbiomes. It is important to note that

although food-producing animals contribute to the broad

dissemination of antibiotic resistant bacteria and genes of

clinical importance [43], they are not necessarily the

originator of the resistance problem [12�,44]. The original

source of the gene encoding the CTX-M-5 ESBLs, for

example, is the chromosome of the enteric bacterium

Kluyvera ascorbata that was originally isolated from

humans [45��]. K. ascorbata is a commensal bacterium

of both humans and animals, and selective pressure led to

the mobilization of its beta-lactamase onto a plasmid,

which was then shared among commensal bacteria such as

E. coli [45��]. Other ESBLs have emerged in parallel and

disseminated through enteric bacteria of both humans

and animals. All vertebrates have a largely similar intes-

tinal microbiome at the phylum level [46], and indeed

some species of bacteria (such as E. coli) are explicitly

shared. Additionally, routes of transmitting resistant bac-

teria from humans to animals, and vice versa, need

improved control to reduce the probability of exchange.
Current Opinion in Microbiology 2014, 19:25–29
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Both broad and specific methods of antibiotic resistance

gene detection will continue to be important for making

discoveries. For example, quantitative PCR-based tools

are appropriate for determining anthropogenic impacts on

resistance gene contamination in the environment [47��].
Other tools, such as functional metagenomics, are

warranted to reveal the physical connections between

resistance genes and mobile genetic elements [42��].
The choice of method depends on the biological question

being asked, and the antibiotic resistance problem is not

without biological questions in need of being addressed.

Continued antibiotic selective pressure in both humans

and animals fuel the dissemination of acquired resistance

once genes have been mobilized. Antibiotics are the

primary defense against bacterial disease in both human

and veterinary medicine; antibiotics need to be used more

prudently in both human and veterinary medicine in

order to slow down resistance gene distribution and

prevent the emergence of new resistance genes.
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Marois-Créhan C, Kempf I: National prevalence of resistance to
third-generation cephalosporins in Escherichia coli isolates
from layer flocks in France. Antimicrob Agents Chemother 2013,
57:6351-6353.

17. Geser N, Stephan R, Kuhnert P, Zbinden R, Kaeppeli U, Cernela N,
Haechler H: Fecal carriage of extended-spectrum-lactamase-
producing Enterobacteriaceae in swine and cattle at slaughter
in Switzerland. J Food Prot 2011, 74:446-449.

18. Ramos S, Silva N, Dias D, Sousa M, Capelo-Martinez JL, Brito F,
Caniça M, Igrejas G, Poeta P: Clonal diversity of ESBL-
producing Escherichia coli in pigs at slaughter level in
Portugal. Foodborne Pathog Dis 2013, 10:74-79.

19. Wittum TE, Mollenkopf DF, Daniels JB, Parkinson AE, Mathews JL,
Fry PR, Abley MJ, Gebreyes WA: CTX-M-type extended-
spectrum b-lactamases present in Escherichia coli from the
feces of cattle in Ohio, United States. Foodborne Pathog Dis
2010, 7:1575-1579.

20. Hiroi M, Yamazaki F, Harada T, Takahashi N, Iida N, Noda Y,
Yagi M, Nishio T, Kanda T, Kawamori F: Prevalence of extended-
spectrum b-lactamase-producing Escherichia coli and
Klebsiella pneumoniae in food-producing animals. J Vet Med
Sci 2012, 74:189-195.
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